Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Rewrite the expression using the negative exponent rule .
Step 1.2
Rewrite the expression using the negative exponent rule .
Step 1.3
Simplify the denominator.
Step 1.3.1
To write as a fraction with a common denominator, multiply by .
Step 1.3.2
Combine the numerators over the common denominator.
Step 1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.5
Multiply by .
Step 1.6
Reorder factors in .
Step 2
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor.
Step 3.2.2.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Move to the left of .
Step 3.3
Move all terms not containing to the right side of the equation.
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Add to both sides of the equation.
Step 3.4
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.5
Simplify the exponent.
Step 3.5.1
Simplify the left side.
Step 3.5.1.1
Simplify .
Step 3.5.1.1.1
Apply the product rule to .
Step 3.5.1.1.2
Multiply the exponents in .
Step 3.5.1.1.2.1
Apply the power rule and multiply exponents, .
Step 3.5.1.1.2.2
Cancel the common factor of .
Step 3.5.1.1.2.2.1
Cancel the common factor.
Step 3.5.1.1.2.2.2
Rewrite the expression.
Step 3.5.1.1.3
Simplify.
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify .
Step 3.5.2.1.1
Use the Binomial Theorem.
Step 3.5.2.1.2
Simplify each term.
Step 3.5.2.1.2.1
Raise to the power of .
Step 3.5.2.1.2.2
Raise to the power of .
Step 3.5.2.1.2.3
Multiply by .
Step 3.5.2.1.2.4
Multiply .
Step 3.5.2.1.2.4.1
Combine and .
Step 3.5.2.1.2.4.2
Multiply by .
Step 3.5.2.1.2.5
Multiply by .
Step 3.5.2.1.2.6
Use the power rule to distribute the exponent.
Step 3.5.2.1.2.6.1
Apply the product rule to .
Step 3.5.2.1.2.6.2
Apply the product rule to .
Step 3.5.2.1.2.7
Raise to the power of .
Step 3.5.2.1.2.8
Raise to the power of .
Step 3.5.2.1.2.9
Multiply .
Step 3.5.2.1.2.9.1
Combine and .
Step 3.5.2.1.2.9.2
Multiply by .
Step 3.5.2.1.2.10
Move the negative in front of the fraction.
Step 3.5.2.1.2.11
Use the power rule to distribute the exponent.
Step 3.5.2.1.2.11.1
Apply the product rule to .
Step 3.5.2.1.2.11.2
Apply the product rule to .
Step 3.5.2.1.2.12
Raise to the power of .
Step 3.5.2.1.2.13
Raise to the power of .
Step 3.6
Divide each term in by and simplify.
Step 3.6.1
Divide each term in by .
Step 3.6.2
Simplify the left side.
Step 3.6.2.1
Cancel the common factor of .
Step 3.6.2.1.1
Cancel the common factor.
Step 3.6.2.1.2
Divide by .
Step 3.6.3
Simplify the right side.
Step 3.6.3.1
Simplify each term.
Step 3.6.3.1.1
Move the negative in front of the fraction.
Step 3.6.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.3.1.3
Combine.
Step 3.6.3.1.4
Cancel the common factor of and .
Step 3.6.3.1.4.1
Factor out of .
Step 3.6.3.1.4.2
Cancel the common factors.
Step 3.6.3.1.4.2.1
Factor out of .
Step 3.6.3.1.4.2.2
Cancel the common factor.
Step 3.6.3.1.4.2.3
Rewrite the expression.
Step 3.6.3.1.5
Multiply by .
Step 3.6.3.1.6
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.3.1.7
Cancel the common factor of .
Step 3.6.3.1.7.1
Move the leading negative in into the numerator.
Step 3.6.3.1.7.2
Factor out of .
Step 3.6.3.1.7.3
Factor out of .
Step 3.6.3.1.7.4
Cancel the common factor.
Step 3.6.3.1.7.5
Rewrite the expression.
Step 3.6.3.1.8
Multiply by .
Step 3.6.3.1.9
Move the negative in front of the fraction.
Step 3.6.3.1.10
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.3.1.11
Combine.
Step 3.6.3.1.12
Cancel the common factor of .
Step 3.6.3.1.12.1
Cancel the common factor.
Step 3.6.3.1.12.2
Rewrite the expression.
Step 3.6.3.1.13
Multiply by .